Evaluation of In Vitro Cytotoxic Potential of Avarol towards Human Cancer Cell Lines and In Vivo Antitumor Activity in Solid Tumor Models
Abstract
:1. Introduction
2. Results
2.1. Assessment of Cytotoxicity of Avarol In Vitro
2.2. Assessment of Antitumor Effect of Avarol In Vivo
3. Discussion
4. Materials and Methods
4.1. Avarol
4.2. Drugs and Solutions
4.3. Cytotoxic Activity
4.3.1. Cell Lines
4.3.2. Treatment of Cell Lines
4.3.3. Determination of Cell Survival - MTT Test
4.4. Antitumor Activity
4.4.1. Compounds Used in In Vivo Experiments
4.4.2. Animals
4.4.3. Tumor Models
4.4.4. Experimental Schemes and the Evaluation of Effects
4.5. Statistical Processing of the Data
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jha, R.K.; Zi-Rong, X. Biomedical Compounds from Marine organisms. Mar. Drugs 2004, 2, 123–146. [Google Scholar] [CrossRef] [Green Version]
- Bhatnagar, I. Marine Sponges: Chemicobiological and Biomedical Applications; Pallela, R., Ehrlich, H., Eds.; Springer: New Delhi, India, 2016. [Google Scholar]
- Sladić, D.; Gasić, M.J. Reactivity and biological activity of the marine sesquiterpene hydroquinone avarol and related compounds from sponges of the order Dictyoceratida. Molecules 2006, 11, 1–33. [Google Scholar] [CrossRef] [PubMed]
- Gordaliza, M. Cytotoxic Terpene Quinones from Marine Sponges. Mar. Drugs 2010, 8, 2849–2870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Motti, C.A.; Bourguet-Kondracki, M.-L.; Longeon, A.; Doyle, J.R.; Llewellyn, L.E.; Tapiolas, D.M.; Yin, P. Comparison of the Biological Properties of Several Marine Sponge-Derived Sesquiterpenoid Quinones. Molecules 2007, 12, 1376–1388. [Google Scholar] [CrossRef] [Green Version]
- Rauter, A.P.; Palma, F.B.; Justino, J.; Araújo, M.E.; dos Santos, S.P. Natural Products in the New Millennium: Prospects and Industrial Application; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Abdelaleem, E.R.; Samy, M.N.; Desoukey, S.Y.; Liu, M.; Quinn, R.J.; Abdelmohsen, U.R. Marine natural products from sponges (Porifera) of the order Dictyoceratida (2013 to 2019); a promising source for drug discovery. RSC Adv. 2020, 10, 34959–34976. [Google Scholar] [CrossRef]
- Jiao, W.-H.; Xu, T.-T.; Gu, B.-B.; Shi, G.-H.; Zhu, Y.; Yang, F.; Han, B.-N.; Wang, S.-P.; Li, Y.-S.; Zhang, W.; et al. Bioactive sesquiterpene quinols and quinones from the marine sponge Dysidea avara. RSC Adv. 2015, 5, 87730–87738. [Google Scholar] [CrossRef]
- Tommonaro, G.; Iodice, C. The Mediterranean sponge Dysidea avara as a 40 year inspiration of marine natural product chemists. J. Biodivers. Endanger. 2014, S1, 001. [Google Scholar]
- Tommonaro, G.; Pejin, B.; Iodice, C.; Tafuto, A.; De Rosa, S. Retracted Article: Further in vitro biological activity evaluation of amino-, thio- and ester-derivatives of avarol. J. Enzym. Inhib. Med. Chem. 2015, 31, 684–686. [Google Scholar] [CrossRef] [Green Version]
- Pejin, B.; Iodice, C.; Kojic, V.; Jakimov, D.; Lazovic, M.; Tommonaro, G. In vitro evaluation of cytotoxic and mutagenic activity of avarol. Nat. Prod. Res. 2016, 30, 1293–1296. [Google Scholar] [CrossRef]
- Ohshiro, T.; Kobayashi, K.; Suzuki, A.; Yamazaki, H.; Uchida, R.; Namikoshi, M.; Tomoda, H. Inhibition of neutral lipid synthesis by avarols from a marine sponge. Bioorganic Med. Chem. Lett. 2019, 29, 2283–2285. [Google Scholar] [CrossRef]
- Müller, W.E.; Maidhof, A.; Zahn, R.K.; Schröder, H.C.; Gasić, M.J.; Heidemann, D.; Bernd, A.; Kurelec, B.; Eich, E.; Seibert, G. Potent antileukemic activity of the novel cytostatic agent avarone and its analogues in vitro and in vivo. Cancer Res. 1985, 45, 4822–4826. [Google Scholar] [PubMed]
- Namba, T.; Kodama, R. Avarol induces apoptosis in pancreatic ductal adenocarcinoma cells by activating PERK–eIF2α–CHOP signaling. Mar. Drugs 2015, 13, 2376–2389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oudkerk, M.; Liu, S.; Heuvelmans, M.A.; Walter, J.E.; Field, J.K. Lung cancer LDCT screening and mortality reduction—Evidence, pitfalls and future perspectives. Nat. Rev. Clin. Oncol. 2021, 18, 135–151. [Google Scholar] [CrossRef] [PubMed]
- World Cancer Research Fund International. Available online: https://www.wcrf.org/cancer-trends/colorectal-cancer-statistics/ (accessed on 13 June 2022).
- World Health Organization. 2022. Available online: https://www.who.int/news-room/fact-sheets/detail/cervical-cancer (accessed on 13 June 2022).
- Pedersen, B.; Koktved, D.P.; Nielsen, L.L. Living with side effects from cancer treatment—A challenge to target information. Scand. J. Caring Sci. 2013, 27, 715–723. [Google Scholar] [CrossRef]
- Pucci, C.; Martinelli, C.; Ciofani, G. Innovative approaches for cancer treatment: Current perspectives and new challenges. Ecancermedicalscience 2019, 13, 961. [Google Scholar] [CrossRef]
- Mishra, S.; Tamta, A.K.; Sarikhani, M.; Desingu, P.A.; Kizkekra, S.M.; Pandit, A.S.; Kumar, S.; Khan, D.; Raghavan, S.C.; Sundaresan, N.R. Subcutaneous Ehrlich Ascites Carcinoma mice model for studying cancer-induced cardiomyopathy. Sci. Rep. 2018, 8, 5599. [Google Scholar] [CrossRef] [Green Version]
- Ozaslan, M.; Karagoz, I.; Kılıç, İ.; Guldur, M. Ehrlich ascites carcinoma. Afr. J. Biotechnol. 2011, 10, 2375–2378. [Google Scholar]
- Frajacomo, F.T.T.; Padilha, C.D.S.; Marinello, P.C.; Guarnier, F.A.; Cecchini, R.; Duarte, J.A.R.; Deminice, R. Solid Ehrlich carcinoma reproduces functional and biological characteristics of cancer cachexia. Life Sci. 2016, 162, 47–53. [Google Scholar] [CrossRef]
- Shirmanova, M.V.; Gavrina, A.I.; Aksenova, N.A.; Glagolev, N.N.; Solovieva, A.B.; Shakhov, B.E.; Zagaynova, E.V. Comparative study of tissue distribution of chlorin e6 complexes with amphiphilic polymers in mice with cervical carcinoma. J. Anal. Bioanal. Tech. S 2014, 1, 008. [Google Scholar] [CrossRef]
- Mannelli, L.D.C.; Esposito, F.P.; Sangiovanni, E.; Pagano, E.; Mannucci, C.; Polini, B.; Ghelardini, C.; Dell’Agli, M.; Izzo, A.A.; Calapai, G.; et al. Pharmacological Activities of Extracts and Compounds Isolated from Mediterranean Sponge Sources. Pharmaceuticals 2021, 14, 1329. [Google Scholar] [CrossRef]
- Ciftci, H.I.; Can, M.; Ellakwa, D.E.; Suner, S.C.; Ibrahim, M.A.; Oral, A.; Sekeroglu, N.; Özalp, B.; Otsuka, M.; Fujita, M.; et al. Anticancer activity of Turkish marine extracts: A purple sponge extract induces apoptosis with multitarget kinase inhibition activity. Investig. New Drugs 2020, 38, 1326–1333. [Google Scholar] [CrossRef] [PubMed]
- Müller, W.E.; Sladić, D.; Zahn, R.K.; Bässler, K.H.; Dogović, N.; Gerner, H.; Gasić, M.J.; Schröder, H.C. Avarol-induced DNA strand breakage in vitro and in Friend erythroleukemia cells. Cancer Res. 1987, 47, 6565–6571. [Google Scholar] [PubMed]
- Stewart, M.; Fell, P.M.; Blunt, J.W.; Munro, M.H.G. Avarol and Related Compounds from the New Zealand Marine Sponge Dysidea sp. Aust. J. Chem. 1997, 50, 341–348. [Google Scholar] [CrossRef]
- Kwatra, B. HYDROQUINONE: A novel growth inhibitor and apoptosis inducer in U-251 MG CELLS. Int. J. Med. Biomed. Stud. 2019, 3, 15–16. [Google Scholar] [CrossRef]
- Orhan, D.D.; Orhan, N.I.L.U.F.E.R.; Demir, O.Z.G.E.; Konuklugil, B.E.L.M.A. Phenolic content, antioxidant and in vitro antidiabetic effects of thirteen marine organisms from Mediterranean Sea. Farmacia 2021, 69, 68–74. [Google Scholar] [CrossRef]
- Ercolano, G.; De Cicco, P.; Ianaro, A. New drugs from the sea: Pro-apoptotic activity of sponges and algae derived compounds. Mar. Drugs 2019, 17, 31. [Google Scholar] [CrossRef] [Green Version]
- Dasari, S.; Tchounwou, P.B. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharmacol. 2014, 740, 364–378. [Google Scholar] [CrossRef] [Green Version]
- Murti, Y.; Agrawal, T. Marine derived pharmaceuticals-development of natural health products from marine biodiversity. Int. J. Chemtech Res. 2010, 2, 2198–2217. [Google Scholar]
- Müller, W.; Zahn, R.; Gasić, M.; Dogović, N.; Maidhof, A.; Becker, C.; Diehl-Seifert, B.; Eich, E. Avarol, a cytostatically active compound from the marine sponge dysidea avara. Comp. Biochem. Physiol. Part C Comp. Pharmacol. 1985, 80, 47–52. [Google Scholar] [CrossRef]
- Minale, L.; Riccio, R.; Sodano, G. Avarol a novel sesquiterpenoid hydroquinone with a rearranged drimane skeleton from the sponge Dysidea avara. Tetrahedron Lett. 1974, 15, 3401–3404. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Ohno, M.; Abe, T. Rapid colorimetric assay for the quantification of leukemia inhibitory factor (LIF) and interleukin-6 (IL-6). J. Immunol. Methods 1991, 145, 199–203. [Google Scholar] [CrossRef] [PubMed]
- Salman, T.M.; Omran, G.A.; El-Naa, M.M.; Doghish, A.S.; Youns, S.; Awad, M.M. Protective effect of proanthocyanidins on nephrotoxicity induced by antitumor dose of cisplatin in ehrlich solid tumor-bearing mice. Arab. J. Lab. Med. 2014, 40, 953–965. [Google Scholar]
Samples | HeLa | LS174 | A549 | MRC-5 |
---|---|---|---|---|
IC50 (μg/mL) | ||||
Avarol | 10.22 ± 0.28 * | 34.06 ± 3.03 * | 35.27 ± 0.64 * | 29.14 ± 0.41 * |
Cisplatin | 3.46 ± 0.25 | 20.38 ± 0.44 | 17.93 ± 0.88 | 10.52 ± 0.22 |
Selectivity Coefficient | HeLa | LS174 | A549 |
---|---|---|---|
Avarol | 2.85 | 0.86 | 0.83 |
Cisplatin | 3.04 | 0.52 | 0.59 |
Time after Inoculation (Days) | Tumor Volume, Rel. Units (M ± SD) * Number of Observations (n) | Inhibition of Tumor Growth (M ± SD; %) | |
---|---|---|---|
Control | Avarol | ||
7 | 1.0 n = 17 | 1.0 n = 16 | 0.0 |
10 | 3.0 ± 1.0 n = 17 | 2.2 ± 0.6 a n = 16 | 28.8 ± 15.6 |
13 | 4.8 ± 1.1 n = 17 | 3.1 ± 0.9 b n = 16 | 35.6 ± 18.0 |
15 | 9.1 ± 2.8 n = 17 | 6.1 ± 1.5 b n = 16 | 32.9 ± 16.4 |
18 | 13.7 ± 3.3 n = 17 | 10.5 ± 1.9 b n = 16 | 24.1 ± 12.7 |
20 | 18.9 ± 3.8 n = 17 | 12.6 ± 2.6 c n = 16 | 33.2 ± 13.7 |
Time after Inoculation (Days) | Tumor Volume, Rel. Units (M ± SD) * Number of Observations (n) | Inhibition of Tumor Growth (M ± SD; %) | |
Control | Avarol | ||
7 | 1.0 n = 24 | 1.0 n = 24 | 0.0 |
9 | 2.6 ± 0.7 n = 24 | 1.7 ± 0.4 a n = 24 | 36.4 ± 15.3 |
11 | 3.7 ± 0.9 n = 24 | 2.3 ± 0.7 a n = 24 | 37.4 ± 17.3 |
14 | 5.3 ± 1.3 n = 22 | 3.8 ± 1.2 b n = 22 | 29.8 ± 21.3 |
16 | 7.1 ± 1.6 n = 17 | 5.0 ± 1.3 b n = 16 | 30.7 ± 17.4 |
18 | 9.5 ± 2.1 n = 15 | 7.0 ± 2.1 c n = 15 | 27.8 ± 18.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stanojkovic, T.P.; Filimonova, M.; Grozdanic, N.; Petovic, S.; Shitova, A.; Soldatova, O.; Filimonov, A.; Vladic, J.; Shegay, P.; Kaprin, A.; et al. Evaluation of In Vitro Cytotoxic Potential of Avarol towards Human Cancer Cell Lines and In Vivo Antitumor Activity in Solid Tumor Models. Molecules 2022, 27, 9048. https://doi.org/10.3390/molecules27249048
Stanojkovic TP, Filimonova M, Grozdanic N, Petovic S, Shitova A, Soldatova O, Filimonov A, Vladic J, Shegay P, Kaprin A, et al. Evaluation of In Vitro Cytotoxic Potential of Avarol towards Human Cancer Cell Lines and In Vivo Antitumor Activity in Solid Tumor Models. Molecules. 2022; 27(24):9048. https://doi.org/10.3390/molecules27249048
Chicago/Turabian StyleStanojkovic, Tatjana P., Marina Filimonova, Nadja Grozdanic, Slavica Petovic, Anna Shitova, Olga Soldatova, Alexander Filimonov, Jelena Vladic, Petr Shegay, Andrey Kaprin, and et al. 2022. "Evaluation of In Vitro Cytotoxic Potential of Avarol towards Human Cancer Cell Lines and In Vivo Antitumor Activity in Solid Tumor Models" Molecules 27, no. 24: 9048. https://doi.org/10.3390/molecules27249048